If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-15-24y=0
a = 5; b = -24; c = -15;
Δ = b2-4ac
Δ = -242-4·5·(-15)
Δ = 876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{876}=\sqrt{4*219}=\sqrt{4}*\sqrt{219}=2\sqrt{219}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{219}}{2*5}=\frac{24-2\sqrt{219}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{219}}{2*5}=\frac{24+2\sqrt{219}}{10} $
| 1/2*x+6=20 | | 3x-1÷4-2x+5÷3=5÷2-2x | | 1-x/4=110 | | X-48+3y+10=90 | | 2t+4,9t^2-10,5=0 | | (4x-2)*(4x-2)=(2x+3)(8x-5) | | 19y/6=114 | | x2+4x-336=0 | | (-k)^2-4(-k-1)=0 | | x2+x-264=0 | | (7x+29)+(11x-31)=135 | | X+3=10x-20 | | (7x+29)+(11x-31)=125 | | 3/4(4w-8)+7=w | | 6÷20=x÷2 | | 400-0,05x=150 | | 400-0,05x=250 | | 5(x+3)=10-20 | | 5x-11=8x-3 | | 16x+51=90 | | 3÷2(x-4)=1÷4(3x+1) | | (2p-1)÷2+(1÷4)=(p+1)÷6 | | 2p-1/2+1/4=p+1/6 | | 25x+x=79 | | (5x-11)°=(8x-3)° | | (5x-11)=(8x-3) | | 3x-2÷5=7+2x | | 3x-2ส่วน5=7+2x | | 3x-(x-14)=5 | | 3x+8=3+x | | |x+9|=19 | | 0.1x=-18 |